RNA-Seq Gene Profiling - A Systematic Empirical Comparison
نویسندگان
چکیده
Accurately quantifying gene expression levels is a key goal of experiments using RNA-sequencing to assay the transcriptome. This typically requires aligning the short reads generated to the genome or transcriptome before quantifying expression of pre-defined sets of genes. Differences in the alignment/quantification tools can have a major effect upon the expression levels found with important consequences for biological interpretation. Here we address two main issues: do different analysis pipelines affect the gene expression levels inferred from RNA-seq data? And, how close are the expression levels inferred to the "true" expression levels? We evaluate fifty gene profiling pipelines in experimental and simulated data sets with different characteristics (e.g, read length and sequencing depth). In the absence of knowledge of the 'ground truth' in real RNAseq data sets, we used simulated data to assess the differences between the "true" expression and those reconstructed by the analysis pipelines. Even though this approach does not take into account all known biases present in RNAseq data, it still allows to estimate the accuracy of the gene expression values inferred by different analysis pipelines. The results show that i) overall there is a high correlation between the expression levels inferred by the best pipelines and the true quantification values; ii) the error in the estimated gene expression values can vary considerably across genes; and iii) a small set of genes have expression estimates with consistently high error (across data sets and methods). Finally, although the mapping software is important, the quantification method makes a greater difference to the results.
منابع مشابه
Impact of Gene Annotation on RNA-seq Data Analysis
RNA-seq has become increasingly popular in transcriptome profiling. One of the major challenges in RNA-seq data analysis is the accurate mapping of junction reads to their genomic origins. To detect splicing sites in short reads, many RNA-seq aligners use reference transcriptome to inform placement of junction reads. However, no systematic evaluation has been performed to assess or quantify the...
متن کاملComparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing.
CAGE (cap analysis gene expression) and RNA-seq are two major technologies used to identify transcript abundances as well as structures. They measure expression by sequencing from either the 5' end of capped molecules (CAGE) or tags randomly distributed along the length of a transcript (RNA-seq). Library protocols for clonally amplified (Illumina, SOLiD, 454 Life Sciences [Roche], Ion Torrent),...
متن کاملComparison of RNA-Seq and Microarray in Transcriptome Profiling of Activated T Cells
To demonstrate the benefits of RNA-Seq over microarray in transcriptome profiling, both RNA-Seq and microarray analyses were performed on RNA samples from a human T cell activation experiment. In contrast to other reports, our analyses focused on the difference, rather than similarity, between RNA-Seq and microarray technologies in transcriptome profiling. A comparison of data sets derived from...
متن کاملA comparison of analog and Next-Generation transcriptomic tools for mammalian studies.
This review focuses on tools for studying a cell's transcriptome, the collection of all RNA transcripts produced at a specific time, and the tools available for determining how these changes in gene expression relate to the functional changes in an organism. While the microarray-based (analog) gene-expression profiling technology has dominated the 'omics' era, Next-Generation Sequencing based g...
متن کاملA Systematic Approach to Time-series Metabolite Profiling and RNA-seq Analysis of Chinese Hamster Ovary Cell Culture
Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014